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BLUF: Probabilistic Programming for Fusion

 Fusion systems take sensor and data inputs and perform useful  reasoning 
with them
 Predict future events
 Infer current situation that led to observations
 Learn how to predict and infer better
 Probabilistic reasoning can do all these things
 But with difficulty for all but the simplest models

Probabilistic programming makes it possible to develop
probabilistic applications with much less effort and expertise

(for fusion applications and beyond)
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Overview

1) What is Probabilistic Programming?

2) Probabilistic Programming in Action

3) Probabilistic Programming Inference 
Algorithms

4) Probabilistic Programming for Long-
Lived AI Systems



What is Probabilistic 
Programming?
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The Gist of Probabilistic Reasoning
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Probabilistic Reasoning: Predicting the Future
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Probabilistic Reasoning: Inferring Factors that Caused Observations
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Probabilistic Reasoning: Using the Past to Predict the  Future

Keynote Presentation at the 22nd International Conference on Information Fusion (Fusion 2019), Ottawa, Canada (July 2019)8



Probabilistic Reasoning: Learning from the Past
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But Probabilistic Reasoning Is Hard!
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You need to
 Implement the representation
 Implement the probabilistic inference algorithm
 Implement the learning algorithm
 Interact with data
 Integrate with an application
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One Approach: Bayesian Networks

 Implement the representation
 Bayesian networks
 Implement the probabilistic inference algorithm
 Standard BN inference algorithms
 Implement the learning algorithm
 Standard BN learning algorithms
 Interact with data
 Use a package that supplies ability to read and store data
 Integrate with an application
 Use a package’s API
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Limitations of this Approach

 Bayesian network models are flat and unstructured
 Bayesian networks have a fixed set of variables
 Variables have simple types
 Many applications do not satisfy these limitations
 Models have natural structure that should be captured
 Changing number of objects
 Variables with structured and complex types
 E.g., sequences, trees, graphs

 Before probabilistic programming, researchers invented  representations 
for each individual application
We want to make using probabilistic models for more complex  

applications as easy as Bayesian networks
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Drastically reduce the work to create  
probabilistic reasoning applications

Expand the range of probabilistic  
applications that can be created

Goals of Probabilistic Programming
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How Probabilistic Programming Achieves This

1. Expressive programming language for representing models
2. General-purpose inference and learning algorithms apply to  models 

written in the language

All you have to do is represent the model in code and you  automatically get 
the application
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tallCenterForward = true  

accurateCross = true

goodHeader = tallCenterForward && accurateCross  

goodGoalie = false

goal = goodHeader && !goodGoalie

Basic Programming Concept: Functional Programming

 Non-probabilistic functional programming language: an  expression 
describes a computation that produces a value
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Functional Probabilistic Programming

 Probabilistic Functional programming language: an expression  describes 
a random computation that produces a value
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tallCenterForward = flip(0.3)  

accurateCross = flip(0.5)  

goodHeader =

if (tallCenterForward && accurateCross) flip(0.8)  

else flip(0.1)

goodGoalie = flip(0.6)  

goal =

if (goodHeader && !goodGoalie) flip(0.7)

else flip(0.3)
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Sampling Semantics

 We imagine running the program many times
 Each run generates a value for each of the variables

 This process defines a joint probability distribution over all the  variables
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Variable Sample 1 Sample 2 Sample 3 Sample 4

Tall center forward True False False False
Accurate cross False True True False
Good header True False False True
Good goalie True True True False
Goal False False False True
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Probabilistic Program Inference Tasks

 Probability computation
 Given observations about some variables (e.g. tallCenterForward)
 Compute probability of values of other variables (e.g. Goal)
 Most probable explanation
 Given observations about some variables
 Compute most likely state of other variables
 Probability of evidence
 Given observations about some variables
 Compute probability of those observations
 Many different inference algorithms used
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Probabilistic Programming Languages (PPLs)

 Most PPLs describe sampling process in a similar manner
 Variations:
 Kinds of variables supported
 E.g., discrete, continuous, or mixed
 Kinds of models supported
 E.g., finite structure vs infinitely recursive
 Integration with ordinary programming language
 E.g., library in host language vs separate language
 Inference tasks supported
 Algorithms used
 Programming styles
 Functional
 Object-oriented
 Logic
 Imperative
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Probabilistic Programming 
in Action
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My Probabilistic Programming Languages

 1997: Stochastic Lisp [Koller, McAllester, & Pfeffer 97]
 First functional PPL and algorithm
 Mainly theoretical
 2001-2009: Integrated Bayesian Agent Language (IBAL)
 First practical functional PPL [Pfeffer 01, 07]
 Some interesting algorithms
 But limited in its expressivity, algorithms, and integration
 2009-2018: Figaro [Pfeffer 12, 16]
 Object-oriented and functional
 Highly expressive
 Many algorithms
 Easy to integrate with data and applications
 Implemented as a Scala library
 2018-: Scruff [Pfeffer & Lynn, 18]
 Designed for long-lived AI applications
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val tallCenterForward = Flip(0.3)  

val accurateCross = Flip(0.5)

val goodHeader =

If(tallCenterForward && accurateCross,  

Flip(0.8), Flip(0.1))

val goodGoalie = Flip(0.6)  

val goal =

If(goodHeader && !goodGoalie,

Flip(0.7), Flip(0.3))

println(VariableElimination.probability(goal, true))

Our Example Program in Figaro
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Figaro Language Concepts (1)

 Apply
 Applies a function to a random variable that creates another random  

variable
 Apply(Uniform(0, 1), x => x * 2)
 Example: Centrality of a probabilistic graph

 Chain
 Creates a new random variable that depends on the value of  another 

random variable
 Chain(Uniform(0, 1), x => Normal(x, 1))
 Example: Random walk on a probabilistic graph
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Figaro Language Concepts (2)

 Condition
 Asserts that a variable must have a certain property
 Uniform(0, 1).addCondition(x => x > 0.5)
 Flip(0.7).observe(true)
 Example: Observing that a probabilistic graph has 26 nodes

 Constraint
 Provides a weighting function for the values of a variable
 Uniform(0, 1).addConstraint(x => x)
 Example: Asserting that nodes in a probabilistic graph tend to have  

fewer edges
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Figaro Applications

 Over the last 10 years, we’ve created a large number of  applications of 
Figaro
 I’ll show you some representative examples to illustrate the  sorts of things 

you can do with probabilistic programming
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Figaro novices were able to quickly build up an  
integrated probabilistic reasoning application

Hydrological Terrain Modeling for Army Logistics (TIDE)
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We were able to perform a sophisticated analysis far  better 
than our previous non-probabilistic method

Malware Lineage (DARPA Cyber Genome)
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Tracklet Merging (DARPA PPAML Challenge Problem)
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We came up with a new algorithm that  we 
would not have thought of without  probabilistic 

programming and  expressed it in one slide
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class Tracklet(
toCandidates: List[(Double, Tracklet)],  
fromCandidates: List[(Double, Tracklet)]

){
val next = Select(toCandidates: _*)
val previous = Select(fromCandidates: _*)

}

for (source <- sources) {  
val nextPrevious =
Chain(source.next,

nextTracklet => nextTracklet.previous)  
nextPrevious.observe(source)

}

Tracklet Merging in Figaro
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Workflow Activity Recognition (DARPA PPAML)
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Problem

Given a sequence of desktop user events, determine the correct workflow,  
instance, and position of each event

Challenge: Workflows are interleaved!

Based on DARPA PAL program, which turned into Siri
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Figaro Model

 Maintain a set of active workflows
 At each time point, the user can
 Continue the current workflow
 Switch to another active workflow
 Start a new workflow
 Inference uses particle filtering
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Workflow Identification Results

 3rd-party evaluation:
 Instrumented Windows desktop events
 E.g., send email, open Word file, open URL
 Six workflows
 E.g., review document, compile report

 Results
 Over 70% of interleaved workflows correct
 Over 80% of non-interleaved workflow correct

 The method from PAL got less than 50% and did not work with  interleaved 
workflows
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Some Other Fusion-Related Applications at Charles River

 Management of uncertainty in  fusion for missile 
defense
 Hierarchical reasoning for space  object 

classification
 Monitoring and predicting health of  engineered 

systems
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Probabilistic Programming 
Inference Algorithms
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Probabilistic Program Inference Tasks

 Probability computation
 Given observations about some variables (e.g., tallCenterForward)
 Compute probability of values of other variables (e.g., Goal)
 Most probable explanation
 Given observations about some variables
 Compute most likely state of other variables
 Probability of evidence
 Given observations about some variables
 Compute probability of those observations
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Algorithm Families

 Most probabilistic programming algorithms are generalizations  of 
graphical models algorithms
 Sampling algorithms
 Generate samples from the probability distribution
 Compute statistics over those samples
 Factored algorithms
 Represent model using tables called factors
 Algorithms perform algebraic operations on factors
 Amortized inference
 Run expensive, one-off compilation to produce fast inference model
 Typically train a neural network to do inference with data generated  from 

the probabilistic model
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Sampling Algorithms: Rejection Sampling

 Generate samples from the program
 Delete the samples that disagree with the evidence
 Compute statistics on the remaining samples
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Variable Sample 1 Sample 2 Sample 3 Sam ple 4

Tall center forward True False False Fals e
Accurate cross False True True Fals e
Good header True False False Tru e
Good goalie True True True Fals e
Goal False False False Tru e

P(accurate cross) = 2/3

Given our example corner kick program
With the observation that a goal was not scored
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Sampling Algorithms: Importance Sampling

 Similar to rejection sampling, but instead of crossing out  samples, weights 
samples by how much they agree with the  evidence
Works with soft evidence
 Allows lookahead to avoid rejections
 Variant: Sequential Monte Carlo
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Variable ¾ ¾ ¾ ¼

Tall center forward True False False False
Accurate cross False True True False
Good header True False False True
Good goalie True True True False
Goal False False False True

P(accurate cross) = (¾ + ¾) / (¾ + ¾ + ¾ + ¼)

Soft evidence: goalie is 3 times more likely to be good
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Sampling Algorithms: Markov Chain Monte Carlo

 Repeatedly change the state of the system using some random  process
 Every so often, collect a sample
 Variants
 Gibbs sampling
 Metropolis-Hastings
 Hamiltonian Monte Carlo
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Variable

Tall center forward True True False False
Accurate cross False True True False
Good header True True True True
Good goalie True True True True
Goal False False False False
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Factored Algorithms

 Expresses computation as sum-of-products

P(good-goalie = True, goal = True) =

Σtcf ΣacΣgh
P(tall-center-forward = tcf)
P(accurate-cross = ac)
P(good-header = gh | tall-center-forward = tcf, accurate-cross = hc)  
P(good-goalie = True)

P(goal = True | good-header = gh, good-goalie = True)
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 Factored algorithms primarily work with discrete problems, but  can be 
faster and more accurate than sampling algorithms
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Factored Algorithms: Variable Elimination

 Rearranges computation of sums of products for maximum  efficiency
 Produces exact answer!
 Complexity exponential in a derived property of the graph  describing the 

computation
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Factored Algorithms: Belief Propagation

 Solve computation by message-passing
 Exact for programs without loops
 Runs in linear time in size of model
With loops, generally gives good answers, but no guarantees of  

convergence or accuracy
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Two Big Issues for Probabilistic Program Inference

1. Probabilistic programming models can define a very large or  infinite 
number of variables
 Can’t generate samples or create factor graph

2. We want to create an easy to use framework for building  probabilistic 
applications, but there are so many algorithms to  choose from and 
configure
 Barrier to entry for non-ML expert users
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Very Large Models: Lazy Inference [Pfeffer et al. 15]

 Expand only the most relevant parts of the model
 Quantify the effect of the unexpanded part on the query
 Use this to provide bounds on the answer
 Refine as desired to improve the bounds
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Lazy Inference: Unbounded But Finite Grammar

 Grammar generates sentences of any length
 Query is whether the sentence contains a specific subsentence
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Lazy inference provides accurate answers on infinite models
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Lazy Inference: Infinite Grammar

 Grammar generates infinite sentence with positive probability!
 No sampling or non-lazy method can produce any answer
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Lazy inference can answer queries no other method can
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Automatic Optimization: Structured Factored Inference  
(SFI) [Pfeffer et al. 18]

 A method to automatically decompose a probabilistic program  and 
optimize each part independently
 Analogous to database query optimization
 Step 1: Decompose inference and use dynamic programming
 Step 2: Optimize each subproblem separately
 Two major advantages of this approach
 It’s much easier to decide what algorithm to use on a small  subproblem 

than a large problem
We get to use different algorithms for different subproblems
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Automatic Optimization: Medical Diagnosis Problem

 Based on QMR-DT benchmark
 Complexity of exact inference grows exponentially with problem size
 VE = variable elimination, BP = belief propagation
 VE/BP is SFI algorithm that automatically chooses between them
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Probabilistic Programming 
for Long-Lived AI Systems
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What do I Mean by Long-Lived AI?

 Agents interact with their environment through sensors and  actuators
 Long-running interactions throughout the lifetime of the AI  system
 Open-ended environments of particular interest

 Note: Long-lived AI does not necessarily imply physical robots
 Examples:
 Chatbot conversing on open-ended series of topics
 Virtual scientist formulating hypotheses, designing experiments, and  

developing theories
 And of course, the household robot taking care of our various needs
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Deep Q Learning for Long-Lived AI

 Impressive results, but some limitations:
 Extremely data hungry
 Huge number of interactions required in simulated environment
 Limited capacity to transfer
 E.g., Kansky et al., 2017: System trained on Breakout fails on minor  

variants of game
 Cannot distinguish causation from correlation
 Struggles with open-ended inference that requires information  outside the 

specific input
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Beyond Deep Learning

 Neural networks are bottom-up data structures
 If we could combine top-down knowledge with bottom-up  sensor 

processing, maybe we can do better
 Useful knowledge can make systems less data-hungry
 General world knowledge can help transfer
 Knowledge can explicitly model causal relationships
 Open-ended world knowledge can be brought to bear

But we must not lose deep learning’s ability to learn  complex 
functions that can’t be programmed!
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An Assist from Cognitive Science: Predictive Processing

 Traditionally:
 Brain encodes sensory stimuli as they occur
 Beliefs and concepts are result of perception
 Predictive processing (Friston, Hohwy, Clark, Rao & Ballard):
 Beliefs about world yield predictions about sensory signals
 Sensory cortex encodes prediction error
 Perception results from combination of prediction and error
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Introducing Scruff [Pfeffer & Lynn 18]

 A new probabilistic programming framework based on  predictive 
processing
 Unlike traditional probabilistic programming, Scruff models are  

hierarchical networks with many layers of nodes
 Each node is represented by a probabilistic program
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Scruff

 Bayesian models fit predictive processing well
 Prediction = prior
 Errors = likelihoods
 Percepts = posterior
 Scruff lets us express prior domain knowledge using programs
 Take observations and reconcile with predictions to form  posterior beliefs
 Programs let us work with more interesting data structures  than just 

enumerated or continuous random variables
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Hierarchical Representations

 Layer functions
 Vector of nodes provide distributed encoding like neural net
 Individual node conditional probabilities structured using  programming 

language facilities
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Higher layers provide: abstraction, aggregation, context  Lower 
layers provide: specialization, decomposition
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Example Hierarchy: Monitoring Vehicles
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Modeling Different Time Rates

 Each variable takes a time argument
 State of layer depends on previous state of same layer and  current state 

of parent layer
 Time deltas can be customized for each layer
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Goal of Monitoring and Learning

 Estimate the state of the system over time
 Each node maintains beliefs about its state
 Represented as probabilities of different hypotheses
 Nodes update asynchronously at the appropriate rate
 Predict future developments
 From the current state estimate, envision probable futures
 Learn to improve the system
 Bayesian update
 Gradient descent
 Abductive hypothesis generation
 Goal is to develop a distributed, real-time system
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Inference by Asynchronous Belief Propagation

 π messages encode predictions from parents
 λ messages encode likelihoods from children
 δ messages encode drift from same node at previous time
 Nodes update asynchronously based on most recent messages
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Examples of Surprise and Adaptation (Planned)

 Case 1: Ordinary sensor noise
 Truck moving at 100kph
 Sensors provide noisy and intermittent observations
 Scruff interprets this as a normal situation of truck maintaining 100kph

 Case 2: Surprising, but intermittent, sensor reading
 Truck moving at 100kph, with momentary 120kph sensor reading
 Scruff interprets this as sensor fault
 Truck still held to be traveling at 100kph

 Case 3: Truck goes faster
 Sensor gradually shifts from 100kph to 180kph
 180kph is faster than previously believed max speed of the truck
 Scruff modifies the movement capability of the truck

 Case 4: Truck goes unbelievably fast
 Sensor increases to 250kph
 This is faster than any believed speed for a truck
 Scruff maintains two hypotheses
 Vehicle class is different – truck is disguise
 Sensor is biased – but this is refuted by sensor reading of other vehicles
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Status

We’ve built a proof-of-concept demo of Scruff for a simple  scenario
We’re now working on a robust, scalable implementation
We plan to make it easy to use, with extensive representation,  control, 

and reporting options
We intend to make it open source

 Please send me an email if you would like to be notified when  the first 
public version is available
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Conclusion

 Probabilistic programming makes it easier to develop  applications to 
predict, infer, and learn for fusion and beyond
 Probabilistic programming languages are maturing and have a  wide 

variety of applications
 Significant improvements have been made in probabilistic  program 

inference in the last few years
 Scruff shows the way to a future of probabilistic programming  as the basis 

for AI systems that interact with the environment  over a long period of time
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More Information

 Figaro is open source
 Contributions welcome!
 Releases can be downloaded from 

www.cra.com/figaro
 Figaro source is on GitHub at 

https://github.com/charles-river-
analytics/figaro

 Charles River Analytics is hiring
 Employee-owned company
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Contact information: apfeffer@cra.com
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